Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available July 11, 2026
-
Summary Humans are driving biodiversity change, which also alters community functional traits. However, how changes in the functional traits of the community alter ecosystem functions—especially belowground—remains an important gap in our understanding of the consequences of biodiversity change.We test hypotheses for how the root traits of the root economics space (composed of the collaboration and conservation gradients) are associated with proxies for ecosystem functioning across grassland and forest ecosystems in both observational and experimental datasets from 810 plant communities. First, we assessed whether community‐weighted means of the root economics space traits adhered to the same trade‐offs as species‐level root traits. Then, we examined the relationships between community‐weighted mean root traits and aboveground biomass production, root standing biomass, soil fauna biomass, soil microbial biomass, decomposition of standard and plot‐specific material, ammonification, nitrification, phosphatase activity, and drought resistance.We found evidence for a community collaboration gradient but not for a community conservation gradient. Yet, links between community root traits and ecosystem functions were more common than we expected, especially for aboveground biomass, microbial biomass, and decomposition.These findings suggest that changes in species composition, which alter root trait means, will in turn affect critical ecosystem functions.more » « lessFree, publicly-accessible full text available October 3, 2026
-
Abstract AimUnderstanding the mechanisms promoting resilience in plant communities is crucial in times of increasing disturbance and global environmental change. Here, we present the first meta‐analysis evaluating the relationship between functional diversity and resilience of plant communities. Specifically, we tested whether the resilience of plant communities is positively correlated with interspecific trait variation (following the niche complementarity hypothesis) and the dominance of acquisitive and small‐size species (following the mass ratio hypothesis), and for the context‐dependent effects of ecological and methodological differences across studies. LocationGlobal. Time Period2004–2021. Major Taxa StudiedVascular plants. MethodsWe compiled a dataset of 69 independent sites from 26 studies that have quantified resilience. For each site, we calculated functional diversity indices based on the floristic composition and functional traits of the plant community (obtained from the TRY database) which we correlated with resilience of biomass and floristic composition. After transforming correlation coefficients to Fisher'sZ‐scores, we conducted a hierarchical meta‐analysis, using a multilevel random‐effects model that accounted for the non‐independence of multiple effect sizes and the effects of ecological and methodological moderators. ResultsIn general, we found no positive functional diversity–resilience relationships of grand mean effect sizes. In contrast to our expectations, we encountered a negative relationship between resilience and trait variety, especially in woody ecosystems, whereas there was a positive relationship between resilience and the dominance of acquisitive species in herbaceous ecosystems. Finally, the functional diversity–resilience relationships were strongly affected by both ecological (biome and disturbance properties) and methodological (temporal scale, study design and resilience metric) characteristics. Main ConclusionsWe rejected our hypothesis of a general positive functional diversity–resilience relationship. In addition to strong context dependency, we propose that idiosyncratic effects of single resident species present in the communities before the disturbances and biological legacies could play major roles in the resilience of terrestrial plant communities.more » « less
An official website of the United States government
